WORKS ON WATERWAYS: CULVERTS

BACKGROUND
The key requirements for culvert crossings are:
- Appropriate hydraulic capacity.
- Provision for fish and aquatic fauna passage.
- Low risk of becoming blocked with flood debris.
- Low risk of total failure.

POTENTIAL WATERWAY IMPACTS
The potential impacts of culvert access crossings can include:
- Alteration to the stream’s natural flow pattern;
- Increase in erosion due to concentration of flow;
- Increased risk of blockage or damage due to debris;
- Reduced capacity for fish and aquatic fauna movement;
- Reduction in wildlife and aquatic fauna habitat in the immediate vicinity of the crossing;
- Adverse impacts on macrophyte communities;
- Reduction in hydraulic capacity of the stream;
- Increased extent of flooding upstream;
- Increased nutrient loads where crossings are used for stock movement on dairy farms;
- Sediment input during construction.

There are a number of arrangements for culverts in waterways as shown in Figure 1.

ASSESSMENT CRITERIA

Hydraulic Assessment
A hydraulic assessment is necessary for all arrangements to check whether or not the works would cause impacts off the applicant’s property, would induce erosion damage to the track or the stream and whether velocities through the culverts are acceptable.

Alignment
The culverts should be laid parallel to the main stream flow path. Low level crossings must be aligned with the track perpendicular to the main stream flow path.

Fish Passage Requirements
It is reported that pipe culverts inhibit the passage of fish and therefore are not recommended for natural streams (NSW Fisheries, 1999). This is due to the narrow effective bed width and greater flow concentration compared with box culverts. Some species of fish are also reluctant to enter the darkened environment that may result from the use of long lengths of pipe.

Generally, box culverts should be used in the Class 2 streams. Refer to Table 1.

Table 1. Pipe culverts can be used at higher levels to provide additional waterway, or used on Class 3 and 4 streams. Pipe culvert crossings should only be considered on Class 3 and 4 waterways.
Table 1

<table>
<thead>
<tr>
<th>Classification</th>
<th>Stream Characteristics</th>
<th>Minimum Preferred Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1: Major fish habitat</td>
<td>Large named permanently flowing stream. Aquatic vegetation present. Known fish habitat.</td>
<td>Bridge</td>
</tr>
<tr>
<td>Class 2: Moderate fish habitat</td>
<td>Smaller named permanently or intermittent flowing stream. Aquatic vegetation present. Known fish habitat.</td>
<td>Large box culvert or bridge</td>
</tr>
<tr>
<td>Class 3: Minimal fish habitat</td>
<td>Named or unnamed watercourse with intermittent flow.</td>
<td>Box / pipe culverts</td>
</tr>
<tr>
<td>Class 4: Unlikely fish habitat</td>
<td>Named or unnamed stream with flow during rain events only.</td>
<td>Ford or culverts</td>
</tr>
</tbody>
</table>

Culvert Width

For Class 2 streams the recommended width of the box culverts across the bed is 75% of the typical streambed width. A narrower width of 50% may be acceptable for Class 3 and 4 streams. For pipe culverts on Class 3 and 4 streams, the total pipe diameter should be equal to the base streambed width. This approach ensures close to natural stream velocities are maintained for aquatic fauna and minimizes potential bed erosion. Where the proposal does not meet this criterion, a wider structure will be a condition of approval.

Invert Level

The invert of culverts should be at least 150 mm below the bed of the stream. This will allow some sedimentation to occur within the culvert, thus providing a more natural environment for fish and aquatic fauna.

Culvert Height

A minimum culvert height of 1,200 mm is recommended for low level culvert crossings on Class 2 streams. A lesser height of 900 mm would be acceptable for Class 3 and 4 streams. This is based on providing at least 600 mm airspace above the typical base flow in the stream to ensure reasonable light within the culvert to encourage fish passage, as well as capacity for minor flows. The recommended height is calculated as follows.

<table>
<thead>
<tr>
<th>Stream depth at normal low flow</th>
<th>300 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airspace</td>
<td>600 mm</td>
</tr>
<tr>
<td>Depth invert below stream bed</td>
<td>150 mm</td>
</tr>
<tr>
<td>Culvert height</td>
<td>1050 mm (say 1200 mm)</td>
</tr>
</tbody>
</table>

Crossing Embankments

The crossing must be stabilised to prevent failure during overtopping. As well as loss of access for the owner and the cost of reinstatement, a failure would mean significant sediment input to the stream. Riprap is required on the downstream batter, bank crest and around the culvert inlet for protection. The rock size should be determined based on the critical flow over the crest before the structure becomes drowned out, after which the velocities over the structure are lower and less critical. The following criteria applies:

- The earth embankment should be compacted to achieve 95% maximum dry density.
- The riprap specification on the downstream batter should be for a well graded hard quarried rock placed 1.5 to 2 times the rock size in thickness. In general a minimum D50 of 300 mm would apply.
- Alternative measures will need to be used where large rock is unavailable. (D50 is the median riprap diameter of the rock mix.)
- The downstream batter to have a maximum slope of 1(v):4(h).
- The crest to be covered with 20 mm to 150 mm diameter rock mix, 200 mm thick (compacted thickness), or sealed with bitumen or concrete.

The upstream batter should not be steeper than 1(v):2(h). Beaching or riprap is not always necessary on the upstream batter but is recommended as good practice if afflux exceeds 300 mm at the point of overtopping. Establishment of a grass cover is desirable to stabilise the batter surface.

Bed and Batter Protection

The need for bed and bank protection depends on the materials at the site. Rock riprap is required on the bed except where the stream bed is rock or consists of stones 150 mm diameter or greater. Rock riprap is also required on the stream banks to protect them during flows over the structure. For low level crossings, riprap is required on bed and banks to at least 1 metre above track level, extending at least 4 times the culvert height downstream of the culvert. The mean diameter (D50) of the riprap can be determined in accordance with SCRC (1991). A range of flows needs to be considered to determine the critical flow condition that leads to the largest size riprap. The quarried rock shall have a minimum D50 of 150 mm nominal size.

Local Drainage

In the case of high level crossings, including dairy crossings, local drainage from the site and access tracks should be directed to sedimentation basins or grassed filter zones to trap sediments and nutrients. Local drainage from low level crossings should be directed to grassed filter zones to trap sediments and nutrients. The batters of the access track excavated into the stream bank should be on a slope of 1(v):2(h) or flatter to facilitate the establishment of a grass cover. Table drains at the toe of the batter should be stabilised with graded rock.